Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Viruses ; 16(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675974

ABSTRACT

The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.


Subject(s)
COVID-19 , Colon , Epithelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Colon/virology , COVID-19/virology , Epithelial Cells/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Virus Replication , Interferon Lambda
2.
Nat Commun ; 15(1): 3469, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658526

ABSTRACT

Human parechoviruses (PeV-A) are increasingly being recognized as a cause of infection in neonates and young infants, leading to a spectrum of clinical manifestations ranging from mild gastrointestinal and respiratory illnesses to severe sepsis and meningitis. However, the host factors required for parechovirus entry and infection remain poorly characterized. Here, using genome-wide CRISPR/Cas9 loss-of-function screens, we identify myeloid-associated differentiation marker (MYADM) as a host factor essential for the entry of several human parechovirus genotypes including PeV-A1, PeV-A2 and PeV-A3. Genetic knockout of MYADM confers resistance to PeV-A infection in cell lines and in human gastrointestinal epithelial organoids. Using immunoprecipitation, we show that MYADM binds to PeV-A1 particles via its fourth extracellular loop, and we identify critical amino acid residues within the loop that mediate binding and infection. The demonstrated interaction between MYADM and PeV-A1, and its importance specifically for viral entry, suggest that MYADM is a virus receptor. Knockout of MYADM does not reduce PeV-A1 attachment to cells pointing to a role at the post-attachment stage. Our study suggests that MYADM is a multi-genotype receptor for human parechoviruses with potential as an antiviral target to combat disease associated with emerging parechoviruses.


Subject(s)
Parechovirus , Picornaviridae Infections , Virus Internalization , Humans , Cell Line , CRISPR-Cas Systems , HEK293 Cells , Organoids/virology , Organoids/metabolism , Parechovirus/genetics , Parechovirus/metabolism , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Protein Binding , Receptors, Virus/metabolism , Receptors, Virus/genetics
3.
Nat Commun ; 15(1): 2905, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575613

ABSTRACT

Two-dimensional materials with ultrahigh in-plane thermal conductivity are ideal for heat spreader applications but cause significant thermal contact resistance in complex interfaces, limiting their use as thermal interface materials. In this study, we present an interfacial phonon bridge strategy to reduce the thermal contact resistance of boron nitride nanosheets-based composites. By using a low-molecular-weight polymer, we are able to manipulate the alignment of boron nitride nanosheets through sequential stacking and cutting, ultimately achieving flexible thin films with a layer of arc-like structure superimposed on perpendicularly aligned ones. Our results suggest that arc-like structure can act as a phonon bridge to lower the contact resistance by 70% through reducing phonon back-reflection and enhancing phonon coupling efficiency at the boundary. The resulting composites exhibit ultralow thermal contact resistance of 0.059 in2 KW-1, demonstrating effective cooling of fast-charging batteries at a thickness 2-5 times thinner than commercial products.

4.
Chemistry ; 30(24): e202400302, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38380868

ABSTRACT

In this paper, Pd-catalyzed [4+2] decarboxylative cycloaddition of 4-vinylbenzodioxinones with barbiturate-derived alkenes has been developed, leading to various spirobarbiturate-chromane derivatives in high yields with excellent diastereo- and enantioselectivities. The scale-up reaction and further derivation of the product were demonstrated. A plausible reaction mechanism was also proposed.

5.
ACS Nano ; 18(8): 6673-6689, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353701

ABSTRACT

The current live rotavirus (RV) vaccines show reduced effectiveness in developing countries, calling for vaccine strategies with improved efficacy and safety. We generated pseudovirus nanoparticles (PVNPs) that display multiple ectodomains of RV viral protein 4 (VP4), named S-VP4e, as a nonreplicating RV vaccine candidate. The RV spike protein VP4s that bind host receptors and facilitate viral entry are excellent targets for vaccination. In this study, we developed scalable methods to produce three S-VP4e PVNPs, each displaying the VP4e antigens from one of the three predominant P[8], P[4], and P[6] human RVs (HRVs). These PVNPs were recognized by selected neutralizing VP4-specific monoclonal antibodies, bound glycan receptors, attached to permissive HT-29 cells, and underwent cleavage by trypsin between VP8* and VP5*. 3D PVNP models were constructed to understand their structural features. A trivalent PVNP vaccine containing the three S-VP4e PVNPs elicited high and well-balanced VP4e-specific antibody titers in mice directed against the three predominant HRV P types. The resulting antisera neutralized the three HRV prototypes at high titers; greater than 4-fold higher than the neutralizing responses induced by a trivalent vaccine consisting of the S60-VP8* PVNPs. Finally, the trivalent S-VP4e PVNP vaccine provided 90-100% protection against diarrhea caused by HRV challenge. Our data supports the trivalent S-VP4e PVNPs as a promising nonreplicating HRV vaccine candidate for parenteral delivery to circumvent the suboptimal immunization issues of all present live HRV vaccines. The established PVNP-permissive cell and PVNP-glycan binding assays will be instrumental for further investigating HRV-host cell interactions and neutralizing effects of VP4-specific antibodies and antivirals.


Subject(s)
Rotavirus , Viral Vaccines , Animals , Mice , Humans , Nanovaccines , Viral Proteins/metabolism , Antibodies, Neutralizing , Polysaccharides , Immunity , Antibodies, Viral
6.
mBio ; 15(3): e0228723, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349185

ABSTRACT

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE: Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Calpain/metabolism , Calpain/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Virus Internalization
7.
Gut Microbes ; 16(1): 2297897, 2024.
Article in English | MEDLINE | ID: mdl-38189373

ABSTRACT

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Gastrointestinal Microbiome , Rotavirus , Infant , Humans , Interferon Lambda , Epithelial Cells , Zea mays
8.
Proc Natl Acad Sci U S A ; 121(6): e2321419121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289959

ABSTRACT

The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.


Subject(s)
Inflammasomes , NF-kappa B , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Intestines , Mitogen-Activated Protein Kinases , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Proc Natl Acad Sci U S A ; 121(1): e2315865120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147552

ABSTRACT

To define cellular immunity to the intracellular pathogen Toxoplasma gondii, we performed a genome-wide CRISPR loss-of-function screen to identify genes important for (interferon gamma) IFN-γ-dependent growth restriction. We revealed a role for the tumor suppressor NF2/Merlin for maximum induction of Interferon Stimulated Genes (ISG), which are positively regulated by the transcription factor IRF-1. We then performed an ISG-targeted CRISPR screen that identified the host E3 ubiquitin ligase RNF213 as necessary for IFN-γ-mediated control of T. gondii in multiple human cell types. RNF213 was also important for control of bacterial (Mycobacterium tuberculosis) and viral (Vesicular Stomatitis Virus) pathogens in human cells. RNF213-mediated ubiquitination of the parasitophorous vacuole membrane (PVM) led to growth restriction of T. gondii in response to IFN-γ. Moreover, overexpression of RNF213 in naive cells also impaired growth of T. gondii. Surprisingly, growth inhibition did not require the autophagy protein ATG5, indicating that RNF213 initiates restriction independent of a previously described noncanonical autophagy pathway. Mutational analysis revealed that the ATPase domain of RNF213 was required for its recruitment to the PVM, while loss of a critical histidine in the RZ finger domain resulted in partial reduction of recruitment to the PVM and complete loss of ubiquitination. Both RNF213 mutants lost the ability to restrict growth of T. gondii, indicating that both recruitment and ubiquitination are required. Collectively, our findings establish RNF213 as a critical component of cell-autonomous immunity that is both necessary and sufficient for control of intracellular pathogens in human cells.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Interferon-gamma/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Toxoplasma/metabolism , Transcription Factors , Adenosine Triphosphatases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Article in English | MEDLINE | ID: mdl-38100336

ABSTRACT

With the rapid advancements of big data and computer vision, many large-scale natural visual datasets are proposed, such as ImageNet-21K, LAION-400M, and LAION-2B. These large-scale datasets significantly improve the robustness and accuracy of models in the natural vision domain. However, the field of medical images continues to face limitations due to relatively small-scale datasets. In this paper, we propose a novel method to enhance medical image analysis across domains by leveraging pre-trained models on large natural datasets. Specifically, a Cross-Domain Transfer Module (CDTM) is proposed to transfer natural vision domain features to the medical image domain, facilitating efficient fine-tuning of models pre-trained on large datasets. In addition, we design a Staged Fine-Tuning (SFT) strategy in conjunction with CDTM to further improve the model performance. Experimental results demonstrate that our method achieves state-of-the-art performance on multiple medical image datasets through efficient fine-tuning of models pre-trained on large natural datasets. The code is available at https://github.com/qklee-lz/CDTM.

11.
Curr Protoc ; 3(10): e915, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37882990

ABSTRACT

During development, cell signaling instructs tissue patterning, the process by which initially identical cells give rise to spatially organized structures consisting of different cell types. How multiple signals combinatorially instruct fate in space and time remains poorly understood. Simultaneous measurement of signaling activity through multiple signaling pathways and of the cell fates they control is critical to addressing this problem. Here we describe an iterative immunofluorescence protocol and computational pipeline to interrogate pattern formation in a 2D model of human gastrulation with far greater multiplexing than is possible with standard immunofluorescence techniques. This protocol and computational pipeline together enable imaging followed by spatial and co-localization analysis of over 27 proteins in the same gastruloids. We demonstrate this by clustering single cell protein expression, using techniques familiar from scRNA-seq, and linking this to spatial position to calculate spatial distributions and cell signaling activity of different cell types. These methods are not limited to patterning in 2D gastruloids and can be easily extended to other contexts. In addition to the iterative immunofluorescence protocol and analysis pipeline, Support Protocols for 2D gastruloid differentiation and producing micropatterned multi-well slides are included. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Iterative immunofluorescence Basic Protocol 2: Computational analysis pipeline Support Protocol 1: Generating micropatterned multi-well slides Support Protocol 2: Differentiation of 2D gastruloids.


Subject(s)
Gastrulation , Single-Cell Analysis , Humans , Fluorescent Antibody Technique , Cell Differentiation , Cluster Analysis
12.
Materials (Basel) ; 16(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687719

ABSTRACT

The friction and wear tests of high-speed railway braking materials for a variety of braking speeds (600, 400, and 200 rad/min) at 65% and 98% RH RH (RH: relative humidity) were carried out utilizing a friction-testing machine and humidity generator. The research results indicate that braking speeds and ambient humidity have a prominent influence on the friction and wear characteristics of high-speed railway braking materials. At 65% and 98% RH, the lower the braking speed, the lower the wear rate, and the better the wear resistance property of the braking material. Furthermore, at 600 rad/min, the wear rate of the braking material at 98% RH was smaller than that at 65% RH. However, at 200 rad/min, the wear rate of the braking material at 98% RH was greater compared to that at 65% RH. Concretely, at 600 rad/min, compared with 65% RH, the wear rate to the brake disc at 98% RH was reduced by about 9%, and the brake pin decreased by about 6%. However, at 200 rad/min, compared to 65% RH, the wear rate to the brake disc at 98% RH increased by about 39%, and the brake pin increased by about 37%.

13.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37693422

ABSTRACT

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.

14.
Food Chem ; 426: 136534, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37302307

ABSTRACT

A highly sensitive and selective HPLC method for the determination of vitamin K vitamers including phylloquinone (PK) and menaquinones (MK-4) in infant formulas is described. The K vitamers were quantified with a fluorescence detector after online post-column electrochemical reduction occurring in a laboratory-made electrochemical reactor (ECR) equipped with platinum plated porous titanium (Pt/Ti) electrodes. The morphology of the electrode showed that the grain size of Pt was homogeneous and well plated on the porous Ti substrate, resulting in largely improved electrochemical reduction efficiency due to the large specific surface area. In addition, the operation parameters such as mobile phase/supporting electrolyte and working potential were optimized. The detection limits of PK and MK-4 were 0.81 and 0.78 ng g-1. Infant formula varying in stages were detected, showing PK ranged from 26.4 to 71.2 µg/100 g, while MK-4 was not detected.


Subject(s)
Infant Formula , Vitamin K , Humans , Infant , Titanium , Porosity , Vitamin K 1/analysis , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Electrodes
15.
PLoS Biol ; 21(3): e3002039, 2023 03.
Article in English | MEDLINE | ID: mdl-36930652

ABSTRACT

Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Humans , Animals , Swine , Interferons , Antiviral Agents/pharmacology , Proteins/genetics , Porcine epidemic diarrhea virus/genetics
16.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837240

ABSTRACT

A multi-functional friction and wear testing machine was used to test the pin disk wear of high-speed railway brake friction material under different disk temperatures (20 °C, 100 °C, and 200 °C) and different ambient humidities (55%, 95%). The test results show that the change in the disk temperature and different ambient humidities have significant effects on the frictional wear performance of the high-speed railway brake material. Under the conditions of 20 °C, 100 °C and 200 °C, the instantaneous friction coefficient and wear rate of the brake material decreased as the ambient humidity increased. The different ambient humidity caused severe surface damage to the brake materials, but the damage mechanisms were dramatically different. At constant temperature, the higher the ambient humidity, the lower the maximum equilibrium temperature of the disc.

17.
ACS Nano ; 17(5): 4886-4895, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36802511

ABSTRACT

Aggregation of two-dimensional (2D) nanosheet fillers in a polymer matrix is a prevalent problem when the filler loading is high, leading to degradation of physical and mechanical properties of the composite. To avoid aggregation, a low-weight fraction of the 2D material (<5 wt %) is usually used to fabricate the composite, limiting performance improvement. Here, we develop a mechanical interlocking strategy where well-dispersed high filling content (up to 20 wt %) of boron nitride nanosheets (BNNSs) can be incorporated into a polytetrafluoroethylene (PTFE) matrix, resulting in a malleable, easy-to-process and reusable BNNS/PTFE composite dough. Importantly, the well-dispersed BNNS fillers can be rearranged into a highly oriented direction due to the malleable nature of the dough. The resultant composite film has a high thermal conductivity (4408% increase), low dielectric constant/loss, and excellent mechanical properties (334%, 69%, 266%, and 302% increases for tensile modulus, strength, toughness, and elongation, respectively), making it suitable for thermal management applications in the high-frequency areas. The technique is useful for the large-scale production of other 2D material/polymer composites with a high filler content for different applications.

18.
Proc Natl Acad Sci U S A ; 120(9): e2214421120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36821582

ABSTRACT

Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens.


Subject(s)
Norovirus , Rotavirus Infections , Rotavirus , Child , Infant , Humans , Animals , Mice , Child, Preschool , Rotavirus/genetics , Antibodies, Neutralizing , Mucous Membrane , Antibodies, Viral
19.
Materials (Basel) ; 15(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36556569

ABSTRACT

The pin on the disc friction tester was used to conduct the intermittent braking testing of train brake materials with a low-temperature environment simulation device at temperatures 20 °C, 0 °C, -10 °C, -20 °C, and -30 °C. The results show that intermittent braking presents different wear characteristics of braking materials at low temperatures. Under different ambient temperature conditions, the most volatile friction coefficient caused by intermittent braking happens at 0 °C, and the wear rate of brake materials reaches its maximum at 0 °C. The wear surface morphology of the brake pad material mainly includes scratches, furrows, adhesions, and abscission pits, while the surface of the brake disc material was dominated by scratches, furrows, and adhesions. With the decrease in temperature, the adhesion damage of the brake pad/disc material increases. At 0 °C, the brake pad material has crack damage.

20.
bioRxiv ; 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36482976

ABSTRACT

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (M pro ), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein, but not M pro . In contrast, calpain inhibitors did not exhibit antiviral activities towards the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an M pro -independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step.

SELECTION OF CITATIONS
SEARCH DETAIL
...